Electrocatalysis library

Journal Articles

Research conducted using the any products that have a background in electrocatalysis.

Use the filter button above the table to search for specific papers or download the attached PDF.

DOWNLOAD

Click here to download the Electrocatalysis Bibliography – PDF

 

TitleURLCitation
In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of PtÐFe Nanocatalysts During Potential Cyclinghttps://doi.org/10.1021/jp506857bZhu, Guo-Zhen; Prabhudev, Sagar; Yang, Jie; Gabardo, Christine M.; Botton, Gianluigi A.; Soleymani, Leyla , In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of PtÐFe Nanocatalysts During Potential Cycling, 2014, The Journal of Physical Chemistry C, 10.1021/jp506857b
Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolytehttps://doi.org/10.1021/nl404577cHoltz, Megan E.; Yu, Yingchao; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A.; Arias, Tom‡s A.; Abru–a, HŽctor D.; Muller, David A. , Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte, 2014, Nano Letters, 10.1021/nl404577c
Quantitative electrochemical measurements using in situ ec-S/TEM deviceshttps://pubmed.ncbi.nlm.nih.gov/24618013/Unocic, Raymond R.; Sacci, Robert L.; Brown, Gilbert M.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L.; Walden, Franklin S.; Gardiner, Daniel S.; Damiano, John; Nackashi, David P. , Quantitative electrochemical measurements using in situ ec-S/TEM devices, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000166
Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigationhttps://www.cambridge.org/core/product/identifier/S143192761400926X/type/journal_articleUnocic, Raymond R.; Sacci, Robert L.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L. , Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation, 2014, Microscopy and Microanalysis, 10.1017/S143192761400926X
Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopyhttps://doi.org/10.1021/acsmacrolett.5b00479Liu, Jinglin; Wei, Bin; Sloppy, Jennifer D.; Ouyang, Liangqi; Ni, Chaoying; Martin, David C. , Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopy, 2015, ACS Macro Letters, 10.1021/acsmacrolett.5b00479
Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEMhttps://doi.org/10.1021/acs.nanolett.5b00175Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. -G.; Mueller, K. T.; Browning, N. D. , Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM, 2015, Nano Letters, 10.1021/acs.nanolett.5b00175
Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclustershttps://doi.org/10.1021/nl5048626Sacci, Robert L.; Black, Jennifer M.; Balke, Nina; Dudney, Nancy J.; More, Karren L.; Unocic, Raymond R. , Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters, 2015, Nano Letters, 10.1021/nl5048626
Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion batteryhttps://linkinghub.elsevier.com/retrieve/pii/S2211285514002213Wu, Fan; Yao, Nan , Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery, 2015, Nano Energy, 10.1016/j.nanoen.2014.11.004
Fractal growth of platinum electrodeposits revealed by in situ electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05167gWang, Lifen; Wen, Jianguo; Sheng, Huaping; Miller, Dean J. , Fractal growth of platinum electrodeposits revealed by in situ electron microscopy, 2016, Nanoscale, 10.1039/C6NR05167G
In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalystshttps://www.sae.org/publications/technical-papers/content/2016-01-1192/Kato, Hisao , In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts, 2016, SAE International Journal of Alternative Powertrains, 10.4271/2016-01-1192
Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Researchhttps://doi.org/10.1021/acs.accounts.6b00330Hodnik, Nejc; Dehm, Gerhard; Mayrhofer, Karl J. J. , Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research, 2016, Accounts of Chemical Research, 10.1021/acs.accounts.6b00330
The Impact of Li Grain Size on Coulombic Efficiency in Li Batterieshttps://www.nature.com/articles/srep34267Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D. , The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries, 2016, Scientific Reports, 10.1038/srep34267
Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electronshttps://www.researchgate.net/publication/310841907_Electrochemistry_in_Liquid_Environments_Challenges_in_the_Presence_of_Accelerated_ElectronsChakravadhanula, Venkata Sai Kiran; Teodoro, Thais Silva; Scherer, Torsten; Garlapati, Suresh Kumar; Kobler, Aaron; Neelisetty, Krishna Kanth; Fawey, Mohammed Hammad; Kuebel, Christian , Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electrons, 2016, EMC Special, -
In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.6b10400Yang, Jie; Andrei, Carmen M.; Botton, Gianluigi A.; Soleymani, Leyla , In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopy, 2017, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.6b10400
Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experimentshttps://doi.org/10.1186/s40679-016-0034-xMoeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J. , Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments, 2017, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0034-x
Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Mediahttps://www.cambridge.org/core/product/identifier/S1431927617012314/type/journal_articleSchilling, Sibylle; Janssen, Arne; Zaluzec, Nestor J.; Burke, M. Grace , Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Media, 2017, Microscopy and Microanalysis, 10.1017/S1431927617012314
Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batterieshttps://www.osti.gov/pages/biblio/1461336-operando-liquid-cell-electron-microscopy-discharge-charge-kinetics-lithium-oxygen-batteriesHe, Kun; Bi, Xuanxuan; Yuan, Yifei; Foroozan, Tara; Song, Boao; Amine, Khalil (ORCID:0000000192063719); Lu, Jun (ORCID:0000000308588577); Shahbazian-Yassar, Reza , Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries, 2018, Nano Energy, 10.1016/j.nanoen.2018.04.046
In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batterieshttps://doi.org/10.1021/acs.nanolett.8b02436Karakulina, Olesia M.; Demortire, Arnaud; Dachraoui, Walid; Abakumov, Artem M.; Hadermann, Joke , In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries, 2018, Nano Letters, 10.1021/acs.nanolett.8b02436
Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a NaÐO2 Battery Using Liquid-Electrochemical Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b04937Lutz, Lukas; Dachraoui, Walid; Demortire, Arnaud; Johnson, Lee R.; Bruce, Peter G.; Grimaud, Alexis; Tarascon, Jean-Marie , Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a NaÐO2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy, 2018, Nano Letters, 10.1021/acs.nanolett.7b04937
Atomic-Level Observation of Electrochemical Platinum Dissolution and Redepositionhttps://doi.org/10.1021/acs.nanolett.9b02382Nagashima, Shinya; Ikai, Toshihiro; Sasaki, Yuki; Kawasaki, Tadahiro; Hatanaka, Tatsuya; Kato, Hisao; Kishita, Keisuke , Atomic-Level Observation of Electrochemical Platinum Dissolution and Redeposition, 2019, Nano Letters, 10.1021/acs.nanolett.9b02382
Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometrieshttps://iopscience.iop.org/article/10.1149/2.0211904jes/metaStricker, Elizabeth A.; Ke, Xinyou; Wainright, Jesse S.; Unocic, Raymond R.; Savinell, Robert F. , Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometries, 2019, Journal of The Electrochemical Society, 10.1149/2.0211904jes
Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of LiÐO2 Battery by Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b02332Lee, Donghoon; Park, Hyeokjun; Ko, Youngmin; Park, Hayoung; Hyeon, Taeghwan; Kang, Kisuk; Park, Jungwon , Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of LiÐO2 Battery by Liquid-Phase Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b02332
Real-time imaging of activation and degradation of carbon supported octahedral PtÐNi alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEMhttps://pubs.rsc.org/en/content/articlelanding/2019/ee/c9ee01185dBeermann, Vera; Holtz, Megan E.; Padgett, Elliot; Araujo, Jorge Ferreira de; Muller, David A.; Strasser, Peter , Real-time imaging of activation and degradation of carbon supported octahedral PtÐNi alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM, 2019, Energy & Environmental Science, 10.1039/C9EE01185D
Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidationhttps://doi.org/10.1021/acsnano.9b04745Ortiz Pe–a, Nathaly; Ihiawakrim, Dris; Han, Madeleine; Lassalle-Kaiser, Benedikt; Carenco, Sophie; Sanchez, ClŽment; Laberty-Robert, Christel; Portehault, David; Ersen, Ovidiu , Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation, 2019, ACS Nano, 10.1021/acsnano.9b04745
Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodepositionhttps://doi.org/10.1021/acs.langmuir.8b02846Yang, Jie; Andrei, Carmen M.; Chan, Yuting; Mehdi, B. Layla; Browning, Nigel D.; Botton, Gianluigi A.; Soleymani, Leyla , Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodeposition, 2019, Langmuir, 10.1021/acs.langmuir.8b02846
Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendriteshttps://doi.org/10.1021/acsenergylett.0c01153Pu, Shengda D.; Gong, Chen; Gao, Xiangwen; Ning, Ziyang; Yang, Sixie; Marie, John-Joseph; Liu, Boyang; House, Robert A.; Hartley, Gareth O.; Luo, Jun; Bruce, Peter G.; Robertson, Alex W. , Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites, 2020, ACS Energy Letters, 10.1021/acsenergylett.0c01153
Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsaem.9b02000Impagnatiello, Andrea; Cerqueira, Carolina Ferreira; Coulon, Pierre-Eugne; Morin, Arnaud; Escribano, Sylvie; Guetaz, Laure; Clochard, Marie-Claude; Rizza, Giancarlo , Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopy, 2020, ACS Applied Energy Materials, 10.1021/acsaem.9b02000
A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201916419Tarnev, Tsvetan; Cychy, Steffen; Andronescu, Corina; Muhler, Martin; Schuhmann, Wolfgang; Chen, Yen-Ting , A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy, 2020, Angewandte Chemie International Edition, 10.1002/anie.201916419
Probing electrochemical surface/interfacial reactions with liquid cell transmission electron microscopy: a challenge or an opportunity?http://www.sciencedirect.com/science/article/pii/S2451910320301010Prabhudev, Sagar; Guay, Daniel , Probing electrochemical surface/interfacial reactions with liquid cell transmission electron microscopy: a challenge or an opportunity?, 2020, Current Opinion in Electrochemistry, 10.1016/j.coelec.2020.05.001
In situ electron microscopy analysis of electrochemical Zn deposition onto an electrodehttp://www.sciencedirect.com/science/article/pii/S0378775320311356Sasaki, Yuki; Yoshida, Kaname; Kawasaki, Tadahiro; Kuwabara, Akihide; Ukyo, Yoshio; Ikuhara, Yuichi , In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode, 2021, Journal of Power Sources, 10.1016/j.jpowsour.2020.228831
Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreductionhttp://www.nature.com/articles/s41467-021-20961-7Wang, Xingli; Klingan, Katharina; Klingenhof, Malte; Mšller, Tim; Ferreira de Araœjo, Jorge; Martens, Isaac; Bagger, Alexander; Jiang, Shan; Rossmeisl, Jan; Dau, Holger; Strasser, Peter , Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction, 2021, Nature Communications, 10.1038/s41467-021-20961-7
Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003118Gong, Chen; Pu, Shengda D.; Gao, Xiangwen; Yang, Sixie; Liu, Junliang; Ning, Ziyang; Rees, Gregory J.; Capone, Isaac; Pi, Liquan; Liu, Boyang; Hartley, Gareth O.; Fawdon, Jack; Luo, Jun; Pasta, Mauro; Grovenor, Chris R. M.; Bruce, Peter G.; Robertson, Alex W. , Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy, 2021, Advanced Energy Materials, https://doi.org/10.1002/aenm.202003118
Operando Methods in Electrocatalysishttps://doi.org/10.1021/acscatal.0c04789Yang, Yao; Xiong, Yin; Zeng, Rui; Lu, Xinyao; Krumov, Mihail; Huang, Xin; Xu, Weixuan; Wang, Hongsen; DiSalvo, Francis J.; Brock, Joel. D.; Muller, David A.; Abru–a, HŽctor D. , Operando Methods in Electrocatalysis, 2021, ACS Catalysis, 10.1021/acscatal.0c04789
Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12https://doi.org/10.1021/acssuschemeng.1c03539Abdi, Zahra; Balaghi, S. Esmael; Sologubenko, Alla S.; Willinger, Marc-Georg; Vandichel, Matthias; Shen, Jian-Ren; Allakhverdiev, Suleyman I.; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12, 2021, ACS Sustainable Chemistry & Engineering, 10.1021/acssuschemeng.1c03539
Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM)https://doi.org/10.1021/acs.macromol.1c00404Subramanian, Vivek; Martin, David C. , Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM), 2021, Macromolecules, 10.1021/acs.macromol.1c00404
Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Lettershttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02378?goto=articleMetrics&ref=pdfZhao, Guangming; Yao, Yunduo; Lu, Wei; Guo, Xuyun; Trucoli, Antonio; Zhu, Ye , Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Letters, 2021, Nano Letters, 10.1021/acs.nanolett.1c02378
Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aesr.202100160Zhang, Xiuli; Liu, Weiyan; Chen, Zhaoxi; Huang, Yifan; Liu, Wei; Yu, Yi , Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observation, 2021, Advanced Energy and Sustainability Research, 10.1002/aesr.202100160
On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolutionhttps://doi.org/10.1149/1945-7111/ac39e0Sasaki, Yuki; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolution, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac39e0
In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applicationshttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100891Bhatia, Ankush; Cretu, Sorina; Hallot, Maxime; Folastre, Nicolas; Berthe, Maxime; Troadec, David; Roussel, Pascal; Pereira?Ramos, Jean?Pierre; Baddour?Hadjean, Rita; Lethien, Christophe; Demortire, Arnaud , In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applications, 2021, Small Methods, 10.1002/smtd.202100891
In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applicationshttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100322Pishgar, Sahar; Gulati, Saumya; Strain, Jacob M.; Liang, Ying; Mulvehill, Matthew C.; Spurgeon, Joshua M. , In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications, 2021, Small Methods, 10.1002/smtd.202100322
Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/acsami.1c00243Balaghi, S. Esmael; Mehrabani, Somayeh; Mousazade, Younes; Bagheri, Robabeh; Sologubenko, Alla S.; Song, Zhenlun; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy, 2021, ACS Applied Materials & Interfaces, 10.1021/acsami.1c00243
Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202107249Fan, Ke; Zou, Haiyuan; Ding, Yunxuan; Aditya Dharanipragada, N.V.R; Fan, Lizhou; Ken Inge, A.; Duan, Lele; Zhang, Biaobiao; Sun, Licheng , Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation, 2022, Small, 10.1002/smll.202107249
Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steelhttps://linkinghub.elsevier.com/retrieve/pii/S0010938X22001020Kovalov, Danyil; Taylor, Christopher D.; Heinrich, Helge; Kelly, Robert G. , Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steel, 2022, Corrosion Science, 10.1016/j.corsci.2022.110184
Progress in In Situ Research on Dynamic Surface Reconstruction of Electrocatalysts for Oxygen Evolution Reactionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aesr.202200036Shen, Wei; Yin, Jie; Jin, Jing; Hu, Yang; Hou, Yichao; Xiao, Jintao; Zhao, Yong-Qing; Xi, Pinxian , Progress in In Situ Research on Dynamic Surface Reconstruction of Electrocatalysts for Oxygen Evolution Reaction, 2022, Advanced Energy and Sustainability Research, 10.1002/aesr.202200036
Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreductionhttps://pubs.acs.org/doi/10.1021/jacs.2c03662Yang, Yao; Roh, Inwhan; Louisia, Sheena; Chen, Chubai; Jin, Jianbo; Yu, Sunmoon; Salmeron, Miquel B.; Wang, Cheng; Yang, Peidong , Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c03662
Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac023/6580073Sasaki, Yuki; Mizushima, Ayako; Mita, Yoshio; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopy, 2022, Microscopy, 10.1093/jmicro/dfac023
Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac021/6572748?login=trueYamazaki, Tomoya; Niinomi, Hiromasa; Kimura, Yuki , Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy, 2022, Microscopy, https://doi.org/10.1093/jmicro/dfac021
Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Studyhttps://pubs.acs.org/doi/10.1021/acsenergylett.2c00209Yang, Yao; Shao, Yu-Tsun; DiSalvo, Francis J.; Muller, David A.; Abru–a, HŽctor D. , Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Study, 2022, ACS Energy Letters, 10.1021/acsenergylett.2c00209
Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdeviceshttps://onlinelibrary.wiley.com/doi/10.1002/admi.202200530Morzy, J?drzej K.; Sartor, Aileen; Dose, Wesley M.; Ou, Canlin; Kar?Narayan, Sohini; De Volder, Michael F. L.; Ducati, Caterina , Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices, 2022, Advanced Materials Interfaces, 10.1002/admi.202200530
Reliable electrochemical setup for in situ observations with an atmospheric SEMhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac028/6605833Yoshida, Kaname; Sasaki, Yuki; Kuwabara, Akihide; Ikuhara, Yuichi , Reliable electrochemical setup for in situ observations with an atmospheric SEM, 2022, Microscopy, 10.1093/jmicro/dfac028
Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shellhttps://linkinghub.elsevier.com/retrieve/pii/S0021979722012723Welling, Tom A.J.; Grau-Carbonell, Albert; Watanabe, Kanako; Nagao, Daisuke; de Graaf, Joost; van Huis, Marijn A.; van Blaaderen, Alfons , Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shell, 2022, Journal of Colloid and Interface Science, 10.1016/j.jcis.2022.07.091
Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/jacs.2c05989Yang, Yao; Shao, Yu-Tsun; Lu, Xinyao; Yang, Yan; Ko, Hsin-Yu; Jr, Robert A DiStasio; DiSalvo, Francis J; Muller, David A; Abru–a, HŽctor D , Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopy, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c05989
Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202206066Kim, Jihoon; Park, Anseong; Kim, Joodeok; Kwak, Seung Jae; Lee, Jae Yoon; Lee, Donghoon; Kim, Sebin; Choi, Back Kyu; Kim, Sungin; Kwag, Jimin; Kim, Younhwa; Jeon, Sungho; Lee, Won Chul; Hyeon, Taeghwan; Lee, Chul?Ho; Lee, Won Bo; Park, Jungwon , Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopy, 2022, Advanced Materials, 10.1002/adma.202206066
Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopyhttps://www.sciencedirect.com/science/article/pii/S0010938X22005777Tian, Mengkun; Choundraj, Jahnavi Desai; Voisin, Thomas; Wang, Y. Morris; Kacher, Josh , Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopy, 2022, Corrosion Science, 10.1016/j.corsci.2022.110659
Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potentialhttps://iopscience.iop.org/article/10.1149/1945-7111/aca367Choudhary, Sanjay; Marusak, Katherine Elizabeth; Eldred, Timothy; Kelly, Robert , Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potential, 2022, Journal of The Electrochemical Society, 10.1149/1945-7111/aca367
The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodeshttp://xlink.rsc.org/?DOI=D2EE02606FGong, Chen; Pu, Shengda D.; Zhang, Shengming; Yuan, Yi; Ning, Ziyang; Yang, Sixie; Gao, Xiangwen; Chau, Chloe; Li, Zixuan; Liu, Junliang; Pi, Liquan; Liu, Boyang; Capone, Isaac; Hu, Bingkun; Melvin, Dominic L. R.; Pasta, Mauro; Bruce, Peter G.; Robertson, Alex W. , The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes, 2023, Energy & Environmental Science, 10.1039/D2EE02606F
Operando studies reveal active Cu nanograins for CO2 electroreductionhttps://www.nature.com/articles/s41586-022-05540-0Yang, Yao; Louisia, Sheena; Yu, Sunmoon; Jin, Jianbo; Roh, Inwhan; Chen, Chubai; Fonseca Guzman, Maria V.; Feij—o, Julian; Chen, Peng-Cheng; Wang, Hongsen; Pollock, Christopher J.; Huang, Xin; Shao, Yu-Tsun; Wang, Cheng; Muller, David A.; Abru–a, HŽctor D.; Yang, Peidong , Operando studies reveal active Cu nanograins for CO2 electroreduction, 2023, Nature, 10.1038/s41586-022-05540-0
Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reactionhttps://www.nature.com/articles/s41467-023-37751-yHu, Yang; Zheng, Yao; Jin, Jing; Wang, Yantao; Peng, Yong; Yin, Jie; Shen, Wei; Hou, Yichao; Zhu, Liu; An, Li; Lu, Min; Xi, Pinxian; Yan, Chun-Hua , Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction, 2023, Nature Communications, 10.1038/s41467-023-37751-y
Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202301415Hou, Jing; Song, Zihan; Odziomek, Mateusz; Tarakina, Nadezda V. , Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopy, 2023, Small, 10.1002/smll.202301415
Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reductionhttps://www.nature.com/articles/s41467-023-40970-yHsu, Chia-Shuo; Wang, Jiali; Chu, You-Chiuan; Chen, Jui-Hsien; Chien, Chia-Ying; Lin, Kuo-Hsin; Tsai, Li Duan; Chen, Hsiao-Chien; Liao, Yen-Fa; Hiraoka, Nozomu; Cheng, Yuan-Chung; Chen, Hao Ming , Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction, 2023, Nature Communications, 10.1038/s41467-023-40970-y
Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline mediahttps://www.nature.com/articles/s41467-023-42221-6Fu, Qiang; Wong, Lok Wing; Zheng, Fangyuan; Zheng, Xiaodong; Tsang, Chi Shing; Lai, Ka Hei; Shen, Wenqian; Ly, Thuc Hue; Deng, Qingming; Zhao, Jiong , Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media, 2023, Nature Communications, 10.1038/s41467-023-42221-6
Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batterieshttps://pubs.acs.org/doi/10.1021/acsnano.3c06879Dachraoui, Walid; Pauer, Robin; Battaglia, Corsin; Erni, Rolf , Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries, 2023, ACS Nano, 10.1021/acsnano.3c06879
Functionalized MXene Films with Substantially Improved Low?voltage Actuationhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202307045Chen, Shaohua; Tan, Shu Fen; Singh, Harpreet; Liu, Liang; Etienne, Mathieu; Lee, Pooi See , Functionalized MXene Films with Substantially Improved Low?voltage Actuation, 2023, Advanced Materials, 10.1002/adma.202307045
Quasi?in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Processhttps://onlinelibrary.wiley.com/doi/10.1002/aesr.202300229Han, Zengyu; Roslie, Hany; Tan, Shu Fen; Wu, Dongshuang , Quasi?in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Process, 2024, Advanced Energy and Sustainability Research, 10.1002/aesr.202300229
Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffractionhttps://www.nature.com/articles/s41467-024-45096-3Abdellah, Ahmed M.; Ismail, Fatma; Siig, Oliver W.; Yang, Jie; Andrei, Carmen M.; DiCecco, Liza-Anastasia; Rakhsha, Amirhossein; Salem, Kholoud E.; Grandfield, Kathryn; Bassim, Nabil; Black, Robert; Kastlunger, Georg; Soleymani, Leyla; Higgins, Drew , Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction, 2024, Nature Communications, 10.1038/s41467-024-45096-3
Applications of electron microscopic observations to electrochemistry in liquid electrolytes for batterieshttps://academic.oup.com/jmicro/article/73/2/154/7271370Yoshida, Kaname; Sasaki, Yuki; Kuwabara, Akihide; Ikuhara, Yuichi , Applications of electron microscopic observations to electrochemistry in liquid electrolytes for batteries, 2024, Microscopy, 10.1093/jmicro/dfad044