Batteries Library

Journal Articles

Research conducted using the any products that have a background in batteries.

Use the filter button above the table to search for specific papers or download the attached PDF.

DOWNLOAD

Click here to download the Batteries Bibliography – PDF

 

TitleURLCitation
In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4https://linkinghub.elsevier.com/retrieve/pii/S0378775311007889Trudeau, M.L.; Laul, D.; Veillette, R.; Serventi, A.M.; Mauger, A.; Julien, C.M.; Zaghib, K. , In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4, 2011, Journal of Power Sources, 10.1016/j.jpowsour.2011.04.003
Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopyhttps://doi.org/10.1021/am503278fHwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A. , Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy, 2014, ACS Applied Materials & Interfaces, 10.1021/am503278f
Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolytehttps://doi.org/10.1021/nl404577cHoltz, Megan E.; Yu, Yingchao; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A.; Arias, Tom‡s A.; Abru–a, HŽctor D.; Muller, David A. , Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte, 2014, Nano Letters, 10.1021/nl404577c
Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEMhttps://doi.org/10.1021/acs.nanolett.5b00175Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. -G.; Mueller, K. T.; Browning, N. D. , Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM, 2015, Nano Letters, 10.1021/acs.nanolett.5b00175
Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclustershttps://doi.org/10.1021/nl5048626Sacci, Robert L.; Black, Jennifer M.; Balke, Nina; Dudney, Nancy J.; More, Karren L.; Unocic, Raymond R. , Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters, 2015, Nano Letters, 10.1021/nl5048626
In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challengeshttps://onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22675Fawey, Mohammed Hammad; Chakravadhanula, Venkata Sai Kiran; Reddy, Munnangi Anji; Rongeat, Carine; Scherer, Torsten; Hahn, Horst; Fichtner, Maximilian; KŸbel, Christian , In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges, 2016, Microscopy Research and Technique, 10.1002/jemt.22675
The Impact of Li Grain Size on Coulombic Efficiency in Li Batterieshttps://www.nature.com/articles/srep34267Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D. , The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries, 2016, Scientific Reports, 10.1038/srep34267
Microwave sintering and in-situ transmission electron microscopy heating study of Li1á2(Mn0á53Co0.27)O2 with improved electrochemical performancehttps://linkinghub.elsevier.com/retrieve/pii/S037877531630814XWu, Jingjing; Liu, Xialin; Bi, Han; Song, Yuanzhe; Wang, Chao; Cao, Qi; Liu, Zhengwang; Wang, Min; Che, Renchao , Microwave sintering and in-situ transmission electron microscopy heating study of Li1á2(Mn0á53Co0.27)O2 with improved electrochemical performance, 2016, Journal of Power Sources, 10.1016/j.jpowsour.2016.06.102
Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batterieshttp://www.sciencedirect.com/science/article/pii/S2211285517300216Zhu, Hongli; Shen, Fei; Luo, Wei; Zhu, Shuze; Zhao, Minhua; Natarajan, Bharath; Dai, Jiaqi; Zhou, Lihui; Ji, Xiulei; Yassar, Reza S.; Li, Teng; Hu, Liangbing , Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries, 2017, Nano Energy, 10.1016/j.nanoen.2017.01.021
Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experimentshttps://doi.org/10.1186/s40679-016-0034-xMoeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J. , Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments, 2017, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0034-x
An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphidehttps://www.nature.com/articles/s41699-017-0024-4Long, Edmund; OÕBrien, Sean; Lewis, Edward A.; Prestat, Eric; Downing, Clive; Cucinotta, Clotilde S.; Sanvito, Stefano; Haigh, Sarah J.; Nicolosi, Valeria , An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide, 2017, 2D Materials and Applications, 10.1038/s41699-017-0024-4
In-situ study of the dewetting behavior of Au/Ni bilayer films supported by a SiO2/Si substratehttps://linkinghub.elsevier.com/retrieve/pii/S135964541730681XCen, Xi; Thron, Andrew M.; van Benthem, Klaus , In-situ study of the dewetting behavior of Au/Ni bilayer films supported by a SiO2/Si substrate, 2017, Acta Materialia, 10.1016/j.actamat.2017.08.027
Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEMhttps://onlinelibrary.wiley.com/doi/10.1002/smll.201700051Lin, Ziyuan; Cai, Lejuan; Lu, Wei; Chai, Yang , Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM, 2017, Small, 10.1002/smll.201700051
Dynamic observation of reversible lithium storage phenomena in hybrid supercapacitor deviceshttps://linkinghub.elsevier.com/retrieve/pii/S2211285517306080Huang, Guan-Min; Tsai, Tsung-Chun; Huang, Chun-Wei; Kumar, Nagesh; Tseng, Tseung-Yuen; Wu, Wen-Wei , Dynamic observation of reversible lithium storage phenomena in hybrid supercapacitor devices, 2017, Nano Energy, 10.1016/j.nanoen.2017.10.002
Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Compositehttps://linkinghub.elsevier.com/retrieve/pii/S245192941730236XChen, Yuming; Li, Xiaoyan; Park, Kyusung; Lu, Wei; Wang, Chao; Xue, Weijiang; Yang, Fei; Zhou, Jiang; Suo, Liumin; Lin, Tianquan; Huang, Haitao; Li, Ju; Goodenough, John B. , Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite, 2017, Chem, 10.1016/j.chempr.2017.05.021
Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batterieshttps://www.osti.gov/pages/biblio/1461336-operando-liquid-cell-electron-microscopy-discharge-charge-kinetics-lithium-oxygen-batteriesHe, Kun; Bi, Xuanxuan; Yuan, Yifei; Foroozan, Tara; Song, Boao; Amine, Khalil (ORCID:0000000192063719); Lu, Jun (ORCID:0000000308588577); Shahbazian-Yassar, Reza , Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries, 2018, Nano Energy, 10.1016/j.nanoen.2018.04.046
In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batterieshttps://doi.org/10.1021/acs.nanolett.8b02436Karakulina, Olesia M.; Demortire, Arnaud; Dachraoui, Walid; Abakumov, Artem M.; Hadermann, Joke , In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries, 2018, Nano Letters, 10.1021/acs.nanolett.8b02436
Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a NaÐO2 Battery Using Liquid-Electrochemical Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b04937Lutz, Lukas; Dachraoui, Walid; Demortire, Arnaud; Johnson, Lee R.; Bruce, Peter G.; Grimaud, Alexis; Tarascon, Jean-Marie , Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a NaÐO2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy, 2018, Nano Letters, 10.1021/acs.nanolett.7b04937
Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of LiÐO2 Battery by Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b02332Lee, Donghoon; Park, Hyeokjun; Ko, Youngmin; Park, Hayoung; Hyeon, Taeghwan; Kang, Kisuk; Park, Jungwon , Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of LiÐO2 Battery by Liquid-Phase Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b02332
Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendriteshttps://doi.org/10.1021/acsenergylett.0c01153Pu, Shengda D.; Gong, Chen; Gao, Xiangwen; Ning, Ziyang; Yang, Sixie; Marie, John-Joseph; Liu, Boyang; House, Robert A.; Hartley, Gareth O.; Luo, Jun; Bruce, Peter G.; Robertson, Alex W. , Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites, 2020, ACS Energy Letters, 10.1021/acsenergylett.0c01153
In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growthhttps://linkinghub.elsevier.com/retrieve/pii/S2211285520301828Huang, Chih-Yang; Tseng, Yi-Tang; Lo, Hung-Yang; Chang, Jeng-Kuei; Wu, Wen-Wei , In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growth, 2020, Nano Energy, 10.1016/j.nanoen.2020.104625
First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batterieshttp://www.sciencedirect.com/science/article/pii/S0378775320305863Fawey, Mohammed Hammad; Chakravadhanula, Venkata Sai Kiran; Munnangi, Anji Reddy; Rongeat, Carine; Hahn, Horst; Fichtner, Maximilian; KŸbel, Christian , First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries, 2020, Journal of Power Sources, 10.1016/j.jpowsour.2020.228283
Unravelling the room-temperature atomic structure and growth kinetics of lithium metalhttps://www.nature.com/articles/s41467-020-19206-wLiang, Chao; Zhang, Xun; Xia, Shuixin; Wang, Zeyu; Wu, Jiayi; Yuan, Biao; Luo, Xin; Liu, Weiyan; Liu, Wei; Yu, Yi , Unravelling the room-temperature atomic structure and growth kinetics of lithium metal, 2020, Nature Communications, 10.1038/s41467-020-19206-w
In situ TEM investigation of electron beam-induced ultrafast chemical lithiation for charginghttp://xlink.rsc.org/?DOI=C9TA09988CHuang, Guan-Min; Huang, Chun-Wei; Kumar, Nagesh; Huang, Chih-Yang; Tseng, Tseung-Yuen; Wu, Wen-Wei , In situ TEM investigation of electron beam-induced ultrafast chemical lithiation for charging, 2020, Journal of Materials Chemistry A, 10.1039/C9TA09988C
In situ electron microscopy analysis of electrochemical Zn deposition onto an electrodehttp://www.sciencedirect.com/science/article/pii/S0378775320311356Sasaki, Yuki; Yoshida, Kaname; Kawasaki, Tadahiro; Kuwabara, Akihide; Ukyo, Yoshio; Ikuhara, Yuichi , In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode, 2021, Journal of Power Sources, 10.1016/j.jpowsour.2020.228831
Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003118Gong, Chen; Pu, Shengda D.; Gao, Xiangwen; Yang, Sixie; Liu, Junliang; Ning, Ziyang; Rees, Gregory J.; Capone, Isaac; Pi, Liquan; Liu, Boyang; Hartley, Gareth O.; Fawdon, Jack; Luo, Jun; Pasta, Mauro; Grovenor, Chris R. M.; Bruce, Peter G.; Robertson, Alex W. , Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy, 2021, Advanced Energy Materials, https://doi.org/10.1002/aenm.202003118
Operando Methods in Electrocatalysishttps://doi.org/10.1021/acscatal.0c04789Yang, Yao; Xiong, Yin; Zeng, Rui; Lu, Xinyao; Krumov, Mihail; Huang, Xin; Xu, Weixuan; Wang, Hongsen; DiSalvo, Francis J.; Brock, Joel. D.; Muller, David A.; Abru–a, HŽctor D. , Operando Methods in Electrocatalysis, 2021, ACS Catalysis, 10.1021/acscatal.0c04789
Atomic-scale investigation of Na3V2(PO4)3 formation process in chemical infiltration via in situ transmission electron microscope for solid-state sodium batterieshttps://linkinghub.elsevier.com/retrieve/pii/S2211285521004006Yu, Tzu-Hsuan; Huang, Chih-Yang; Wu, Min-Ci; Chen, Yen-Jung; Lan, Tu; Tsai, Chih-Long; Chang, Jeng-Kuei; Eichel, RŸdiger-A.; Wu, Wen-Wei , Atomic-scale investigation of Na3V2(PO4)3 formation process in chemical infiltration via in situ transmission electron microscope for solid-state sodium batteries, 2021, Nano Energy, 10.1016/j.nanoen.2021.106144
Direct View on the Origin of High Li + Transfer Impedance in All?Solid?State Batteryhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202103971Yang, Liting; Li, Xiao; Pei, Ke; You, Wenbin; Liu, Xianhu; Xia, Hui; Wang, Yonggang; Che, Renchao , Direct View on the Origin of High Li + Transfer Impedance in All?Solid?State Battery, 2021, Advanced Functional Materials, 10.1002/adfm.202103971
On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolutionhttps://doi.org/10.1149/1945-7111/ac39e0Sasaki, Yuki; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolution, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac39e0
Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-Driven In Situ Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsaem.1c01321Luo, Xin; Liu, Weiyan; Wang, Zeyu; Liang, Chao; He, Xuming; Yu, Yi , Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-Driven In Situ Electron Microscopy, 2021, ACS Applied Energy Materials, 10.1021/acsaem.1c01321
In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applicationshttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100891Bhatia, Ankush; Cretu, Sorina; Hallot, Maxime; Folastre, Nicolas; Berthe, Maxime; Troadec, David; Roussel, Pascal; Pereira?Ramos, Jean?Pierre; Baddour?Hadjean, Rita; Lethien, Christophe; Demortire, Arnaud , In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applications, 2021, Small Methods, 10.1002/smtd.202100891
The electric double layer effect and its strong suppression at Li+ solid electrolyte/hydrogenated diamond interfaceshttps://www.nature.com/articles/s42004-021-00554-7Tsuchiya, Takashi; Takayanagi, Makoto; Mitsuishi, Kazutaka; Imura, Masataka; Ueda, Shigenori; Koide, Yasuo; Higuchi, Tohru; Terabe, Kazuya , The electric double layer effect and its strong suppression at Li+ solid electrolyte/hydrogenated diamond interfaces, 2021, Communications Chemistry, 10.1038/s42004-021-00554-7
Template-free synthesis of a yolkÐshell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storagehttps://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta07221hXiao, Ming-Jun; Zhang, Hong; Ma, Bo; Zhang, Ze-Qi; Li, Xiang-Yang; Xiao, Qi; Wang, Qiang; Peng, Yong; Zhang, Hao-Li , Template-free synthesis of a yolkÐshell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storage, 2021, Journal of Materials Chemistry A, 10.1039/D1TA07221H
Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathodehttps://www.sciencedirect.com/science/article/pii/S240582972100578XLi, Yiwei; Xu, Shenyang; Zhao, Wenguang; Chen, Zhefeng; Chen, Zhaoxi; Li, Shunning; Hu, Jiangtao; Cao, Bo; Li, Jianyuan; Zheng, Shisheng; Chen, Ziwei; Zhang, Taolue; Zhang, Mingjian; Pan, Feng , Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode, 2022, Energy Storage Materials, 10.1016/j.ensm.2021.12.003
Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdeviceshttps://onlinelibrary.wiley.com/doi/10.1002/admi.202200530Morzy, J?drzej K.; Sartor, Aileen; Dose, Wesley M.; Ou, Canlin; Kar?Narayan, Sohini; De Volder, Michael F. L.; Ducati, Caterina , Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices, 2022, Advanced Materials Interfaces, 10.1002/admi.202200530
The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodeshttp://xlink.rsc.org/?DOI=D2EE02606FGong, Chen; Pu, Shengda D.; Zhang, Shengming; Yuan, Yi; Ning, Ziyang; Yang, Sixie; Gao, Xiangwen; Chau, Chloe; Li, Zixuan; Liu, Junliang; Pi, Liquan; Liu, Boyang; Capone, Isaac; Hu, Bingkun; Melvin, Dominic L. R.; Pasta, Mauro; Bruce, Peter G.; Robertson, Alex W. , The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes, 2023, Energy & Environmental Science, 10.1039/D2EE02606F
All?Solid?State Garnet?Based Lithium Batteries at WorkÐIn Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanismhttps://onlinelibrary.wiley.com/doi/10.1002/advs.202205012Hou, An?Yuan; Huang, Chih?Yang; Tsai, Chih?Long; Huang, Chun?Wei; Schierholz, Roland; Lo, Hung?Yang; Tempel, Hermann; Kungl, Hans; Eichel, RŸdiger?A.; Chang, Jeng?Kuei; Wu, Wen?Wei , All?Solid?State Garnet?Based Lithium Batteries at WorkÐIn Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanism, 2023, Advanced Science, 10.1002/advs.202205012
Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materialshttps://academic.oup.com/mam/article/29/1/105/6927146Poulizac, Julie; Boulineau, Adrien; Billy, Emmanuel; Masenelli-Varlot, Karine , Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materials, 2023, Microscopy and Microanalysis, 10.1093/micmic/ozac025
Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reactionhttps://www.nature.com/articles/s41467-023-37751-yHu, Yang; Zheng, Yao; Jin, Jing; Wang, Yantao; Peng, Yong; Yin, Jie; Shen, Wei; Hou, Yichao; Zhu, Liu; An, Li; Lu, Min; Xi, Pinxian; Yan, Chun-Hua , Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction, 2023, Nature Communications, 10.1038/s41467-023-37751-y
Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202301415Hou, Jing; Song, Zihan; Odziomek, Mateusz; Tarakina, Nadezda V. , Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopy, 2023, Small, 10.1002/smll.202301415
Elucidating Phase Transformation and Surface Amorphization of Li 7 La 3 Zr 2 O 12 by In Situ Heating TEMhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202304799Zheng, Hongkui; Xu, Mingjie; He, Kai , Elucidating Phase Transformation and Surface Amorphization of Li 7 La 3 Zr 2 O 12 by In Situ Heating TEM, 2023, Small, 10.1002/smll.202304799
In Situ Atomic?Scale Investigation of Structural Evolution During Sodiation/Desodiation Processes in Na 3 V 2 (PO 4 ) 3 ?Based All?Solid?State Sodium Batterieshttps://onlinelibrary.wiley.com/doi/10.1002/advs.202301490Shen, Fang?Chun; Ma, Qianli; Tietz, Frank; Kao, Jui?Cheng; Huang, Chi?Ting; Hernandha, Rahmandhika Firdauzha Hary; Huang, Chun?Wei; Lo, Yu?Chieh; Chang, Jeng?Kuei; Wu, Wen?Wei , In Situ Atomic?Scale Investigation of Structural Evolution During Sodiation/Desodiation Processes in Na 3 V 2 (PO 4 ) 3 ?Based All?Solid?State Sodium Batteries, 2023, Advanced Science, 10.1002/advs.202301490
Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batterieshttps://pubs.acs.org/doi/10.1021/acsnano.3c06879Dachraoui, Walid; Pauer, Robin; Battaglia, Corsin; Erni, Rolf , Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries, 2023, ACS Nano, 10.1021/acsnano.3c06879
Elucidating Dynamic Conductive State Changes in Amorphous Lithium Lanthanum Titanate for Resistive Switching Deviceshttps://www.sciencedirect.com/science/article/pii/S2949822823001028Shimizu, Ryosuke; Cheng, Diyi; Zhu, Guomin; Han, Bing; Marchese, Thomas S; Xu, Mingjie; Pan, Xiaoqing; Zhang, Minghao; Meng, Ying Shirley , Elucidating Dynamic Conductive State Changes in Amorphous Lithium Lanthanum Titanate for Resistive Switching Devices, 2024, Next Materials, 10.1016/j.nxmate.2023.100102
Highly disordered amorphous Li-battery electrolyteshttps://linkinghub.elsevier.com/retrieve/pii/S2590238523006173Zhu, Yuntong; Hood, Zachary D.; Paik, Haemin; Groszewicz, Pedro B.; Emge, Steffen P.; Sayed, Farheen N.; Sun, Chengjun; Balaish, Moran; Ehre, David; Miara, Lincoln J.; Frenkel, Anatoly I.; Lubomirsky, Igor; Grey, Clare P.; Rupp, Jennifer L.M. , Highly disordered amorphous Li-battery electrolytes, 2024, Matter, 10.1016/j.matt.2023.12.004
Uncovering the Network Modifier for Highly Disordered Amorphous Li?Garnet Glass?Ceramicshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202302438Zhu, Yuntong; Kennedy, Ellis R.; Yasar, Bengisu; Paik, Haemin; Zhang, Yaqian; Hood, Zachary D.; Scott, Mary; Rupp, Jennifer L.M. , Uncovering the Network Modifier for Highly Disordered Amorphous Li?Garnet Glass?Ceramics, 2024, Advanced Materials, 10.1002/adma.202302438