BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

WEBLINK	CITATIONS
	CIAIIONS
https://onlinelibrary.wiley.com/doi/10.1002/admi.202202507	Krug, David; Widemann, Maximilian; Gruber, Felix; Ahmed, Shamail; Demuth, Thomas; Beyer, Andreas; Volz, Kerstin , Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder, 2023, Advanced Materials Interfaces, 10.1002/admi.202202507
https://www.nature.com/articles/s41467-023-39458-6	Koo, Kunmo; Shen, Bo; Baik, Sung-Il; Mao, Zugang; Smeets, Paul J. M.; Cheuk, Ivan; He, Kun; Dos Reis, Roberto; Huang, Liliang; Ye, Zihao; Hu, Xiaobing; Mirkin, Chad A.; Dravid, Vinayak P. , Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts, 2023, Nature Communications, 10.1038/ s41467-023-39458-6
https://pubs.acs.org/doi/10.1021/acs.jpcc.3c01117	Turner, Savannah J.; Wezendonk, Dennie F. L.; Terorde, Robert J. A. M.; de Jong, Krijn P. , In Situ TEM Study of the Genesis of Supported Nickel Catalysts, 2023, The Journal of Physical Chemistry C, 10.1021/acs. jpcc.3c01117
https://pubs.acs.org/doi/10.1021/acsanm.3c01669	Hsiao, Kai-Yuan; Tseng, Yu-Han; Chiang, Chao-Lung; Chen, Yan-De; Lin, Yan-Gu; Lu, Ming-Yen , Environment-Dependent Structural Evolution and Electrocatalytic Performance in N 2 Reduction of Mo-Based ZIF-8, 2023, ACS Applied Nano Materials, 10.1021/acsanm.3c01669
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300434	Nassereddine, Abdallah; Delannoy, Laurent; Ricolleau, Christian; Louis, Catherine; Alloyeau, Damien; Wang, Guillaume; Wang, Qing; Guesmi, Hazar; Nelayah, Jaysen , Atomic Scale Observation of the Structural Dynamics of Supported Gold Nanocatalysts under 1,3-Butadiene by in situ Environmental Transmission Electron Microscopy, 2023, ChemCatChem, 10.1002/cctc.202300434
https://pubs.acs.org/doi/10.1021/jacs.3c02822	Clatworthy, Edwin B.; Moldovan, Simona; Nakouri, Kalthoum; Gramatikov, Stoyan P.; Dalena, Francesco; Daturi, Marco; Petkov, Petko St.; Vayssilov, Georgi N.; Mintova, Svetlana , Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling, 2023, Journal of the American Chemical Society, 10.1021/jacs.3c02822
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167	Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study byIn SituElectron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
https://pubs.acs.org/doi/10.1021/jacsau.3c00330	Lee, Jaeha; Tieu, Peter; Finzel, Jordan; Zang, Wenjie; Yan, Xingxu; Graham, George; Pan, Xiaoqing; Christopher, Phillip , How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces, 2023, JACS Au, 10.1021/jacsau.3c00330
https://www.nature.com/articles/s41598-023-46960-w	Abdulhamid, Zeyad M.; Dabbawala, Aasif A.; Delclos, Thomas; Straubinger, Rainer; Rueping, Magnus; Polychronopoulou, Kyriaki; Anjum, Dalaver H. , Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing, 2023, Scientific Reports, 10.1038/s41598-023-46960-w
https://link.springer.com/10.1007/s10853-023-09005-1	Malik, Hammad; Howard, Jerry R.; Van Devener, Brian; Mohanty, Swomitra Kumar; Carlson, Krista , In situ TEM investigation of the oxide/ metal interface during the annealing of anodically formed titanium dioxide nanotubes, 2023, Journal of Materials Science, 10.1007/ s10853-023-09005-1
https://linkinghub.elsevier.com/retrieve/pii/S0021951723003512	Valente, Jaime S.; Armedáriz-Herrera, Héctor; Quintana-Solórzano, Roberto; Angeles-Chavez, Carlos; Rodríguez-Hernández, Andrea; Guzmán- Castillo, María L.; López Nieto, José M.; Mhin Nha Le, Thi; Millet, Jean-Marc M. , Pathway to defective highly active and stable MoVSbOx catalysts for ethane oxidative dehydrogenation through a dislodging process involving controlled combustion of amino-organic compounds, 2023, Journal of Catalysis, 10.1016/j.jcat.2023.115106
https://pubs.acs.org/doi/10.1021/acsnano.3c03721	Visser, Nienke L.; Turner, Savannah J.; Stewart, Joseph A.; Vandegehuchte, Bart D.; Van Der Hoeven, Jessi E. S.; De Jongh, Petra E. , Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere, 2023, ACS Nano, 10.1021/ acsnano.3c03721
https://pubs.acs.org/doi/10.1021/acs.jpcc.3c02657	Welling, Tom A. J.; Schoemaker, Suzan E.; De Jong, Krijn P.; De Jongh, Petra E. , Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies, 2023, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.3c02657
	i. i

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
A Novel Heating Technology for Ultra-High Resolution Imaging in Electron Microscopes	https://www.cambridge.org/core/journals/microscopy-today/article/novel- heating-technology-for-ultrahigh-resolution-imaging-in-electron-microscopes/ 5949C29C44409BC9D1E8AEFDEF8C20B5	A Novel Heating Technology for Ultra-High Resolution Imaging in Electron Microscopes
Synthesis of mesoporous palladium with tunable porosity and demonstration of its thermal stability by in situ heating and environmental transmission electron microscopy	https://pubs.rsc.org/en/content/articlelanding/2013/ta/c2ta00190j	Synthesis of mesoporous palladium with tunable porosity and demonstration of its thermal stability by in situ heating and environmental transmission electron microscopy
Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities forIn SituReaction Studies	https://www.cambridge.org/core/product/identifier/S1431927612001249/type/ journal_article	Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities forIn SituReaction Studies
In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2	https://pubs.rsc.org/en/content/articlelanding/2014/ta/c4ta02583k	In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2
Concurrent in situ ion irradiation transmission electron microscope	https://www.mendeley.com/ catalogue/4c6114d4-a216-3012-bb1f-49f5e04bd40d/	Concurrent in situ ion irradiation transmission electron microscope
Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy	https://www.nature.com/articles/ncomms8778	Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy

Improved Thermal Stability and Methane-Oxidation Activity of Pd/Al2O3 Catalysts by Atomic Layer Deposition of ZrO2

Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite	https://doi.org/10.1021/jacs.6b10169	Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite
Correlation of morphology with catalytic performance of CrOx/ Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM	http://www.sciencedirect.com/science/article/pii/S1385894715016666	Correlation of morphology with catalytic performance of CrOx/ Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM
Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure	http://www.sciencedirect.com/science/article/pii/S002195171600083X	Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure
Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction	https://doi.org/10.1021/acs.nanolett.6b01769	Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction
Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM	http://www.sciencedirect.com/science/article/pii/S0022311516300824	Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM
Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles	https://doi.org/10.1021/acscatal.6b01106	Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles
Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation	https://www.cambridge.org/core/journals/microscopy-and-microanalysis/ article/abs/preparation-and-loading-process-of-single-crystalline- samples-into-a-gas-environmental-cell-holder-for-in-situ-atomic- resolution-scanning-transmission-electron-microscopic-observation/ C4A0371B31BC03D26CB7751820052D44	Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens	https://www.cambridge.org/core/journals/microscopy-and-microanalysis/ article/abs/sample-preparation-methodologies-for-in-situ-liquid-and- gaseous-cell-analytical-transmission-electron-microscopy-of-electropolished- specimens/2EF60DDA6421035B91C31E0C13B2B902	Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens
Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal	https://pubs.acs.org/doi/10.1021/acs.nanolett.6b03221	Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal
Catalytic Nanopatterning of Few-Layer Graphene	https://hal.archives-ouvertes.fr/hal-02182887	Catalytic Nanopatterning of Few-Layer Graphene
In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis	https://doi.org/10.1021/acs.inorgchem.7b01279	In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis
Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts	https://www.nature.com/articles/nchem.2607	Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt3Co Nanoparticles via in Situ Transmission Electron Microscopy	https://doi.org/10.1021/acs.nanolett.7b01325	Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt3Co Nanoparticles via in Situ Transmission Electron Microscopy

Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201703460

Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment

Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR	https://doi.org/10.1021/jacs.7b01081	Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR
Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation	https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201704758	Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation
In situ atomic-scale observation of oxygen-driven core-shell formation in Pt 3 Co nanoparticles	https://www.nature.com/articles/s41467-017-00161-y	In situ atomic-scale observation of oxygen-driven core-shell formation in Pt 3 Co nanoparticles
High-temperature electron microscopy study of ThO2 microspheres sintering	http://www.sciencedirect.com/science/article/pii/S0955221916304630	High-temperature electron microscopy study of ThO2 microspheres sintering
In Situ Atomic-Scale Observation of the Two-Dimensional Co(OH)2 Transition at Atmospheric Pressure	https://doi.org/10.1021/acs.chemmater.7b01291	In Situ Atomic-Scale Observation of the Two-Dimensional Co(OH)2 Transition at Atmospheric Pressure
In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature	https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201700425	In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature

BIBLIOGRAPHY — JOURNAL ARTICLES

TITLE	WEB LINK	CITATIONS
In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gases	https://academic.oup.com/mam/article-abstract/23/4/751/6896748?redirected From=fulltext	In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gases
Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysis	https://www.nature.com/articles/s41598-017-10703-5	Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysis
Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates	http://www.sciencedirect.com/science/article/pii/S2542435117300302	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates
The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600	http://www.sciencedirect.com/science/article/pii/S0304399116303345	The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600
NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy	https://link.springer.com/article/10.1007/s11085-016-9676-2	NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy
An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide	https://www.nature.com/articles/s41699-017-0024-4	An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide

In Situ Observation of Rh-CaTiO3 Catalysts during Reduction and Oxidation Treatments by Transmission Electron Microscopy

Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

http://www.sciencedirect.com/science/article/pii/S0304399117300529

Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

Thermal behavior of Pd@SiO2 nanostructures in various gas environments: a combined 3D and in situ TEM approach	https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr06951d	Thermal behavior of Pd@SiO2 nanostructures in various gas environments: a combined 3D and in situ TEM approach
In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials	https://www.cambridge.org/core/journals/mrs-advances/article/in-situ- atmospheric-transmission-electron-microscopy-of-catalytic-nanomaterials/71F 8D0135EF96CD595956DBD2422D116	In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials
Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence	https://link.aps.org/doi/10.1103/PhysRevLett.120.025901	Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence
In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures	https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr01227j	In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures
Thermally Introduced Bismuth Clustering in Ga(P,Bi) Layers under Group V Stabilised Conditions Investigated by Atomic Resolution In Situ (S)TEM	https://www.nature.com/articles/s41598-018-27286-4	Thermally Introduced Bismuth Clustering in Ga(P,Bi) Layers under Group V Stabilised Conditions Investigated by Atomic Resolution In Situ (S)TEM
Insight by In Situ Gas Electron Microscopy on the Thermal Behaviour and Surface Reactivity of Cobalt Nanoparticles	https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ cctc.201800854	Insight by In Situ Gas Electron Microscopy on the Thermal Behaviour and Surface Reactivity of Cobalt Nanoparticles

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
Reactivity and structural evolution of urchin-like Co nanostructures under controlled environments	https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12656	Reactivity and structural evolution of urchin-like Co nanostructures under controlled environments
Analytical andin situApplications Using Aberration Corrected Scanning Transmission Electron Microscope	https://www.jstage.jst.go.jp/article/ejssnt/16/0/16_286/_article	Analytical andin situApplications Using Aberration Corrected Scanning Transmission Electron Microscope
Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations	http://www.nature.com/articles/s41467-018-06900-z	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations
CombiningIn-SituTransmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts	https://pubs.acs.org/doi/10.1021/acs.jpcc.8b03959	CombiningIn-SituTransmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts
Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles	https://doi.org/10.1021/acs.chemmater.8b05199	Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles
Bimetallic Phosphide (Ni,Cu)2P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migration	https://doi.org/10.1021/acs.chemmater.9b01505	Bimetallic Phosphide (Ni,Cu)2P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migration
Toward 3D imaging of corrosion at the nanoscale: Cross-sectional analysis of in-situ oxidized TEM samples	http://www.sciencedirect.com/science/article/pii/S0968432818302828	Toward 3D imaging of corrosion at the nanoscale: Cross-sectional analysis of in-situ oxidized TEM samples

Structural evolution of atomically dispersed Pt catalysts dictates reactivity	

https://www.nature.com/articles/s41563-019-0349-9

Structural evolution of atomically dispersed Pt catalysts dictates reactivity

Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reduction	http://www.sciencedirect.com/science/article/pii/S1044580318328262	Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reduction
In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressure	https://www.cambridge.org/core/journals/microscopy-today/article/ in-situ-scanning-transmission-electron-microscopy-with-atomic- resolution-under-atmospheric-pressure/55D8A0C1194DACD2E1D768540 6CE2193	In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressure
Motion of crystalline inclusions by interface diffusion in the proximity of free surfaces	https://doi.org/10.1007/s11051-019-4658-3	Motion of crystalline inclusions by interface diffusion in the proximity of free surfaces
In situcharacterization of kinetics and mass transport of PbSe nanowire growthviaLS and VLS mechanisms	http://xlink.rsc.org/?DOI=C9NR01200A	In situcharacterization of kinetics and mass transport of PbSe nanowire growthviaLS and VLS mechanisms
Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure	https://pubs.acs.org/doi/10.1021/acsnano.8b08530	Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure
Sintering of cobalt during FTS: Insights from industrial and model systems	http://www.sciencedirect.com/science/article/pii/S0920586118309088	Sintering of cobalt during FTS: Insights from industrial and model systems
Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina	https://doi.org/10.1021/acscatal.0c00042	Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry	http://www.sciencedirect.com/science/article/pii/S0304399119300932	Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry
Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The Case of Platinum-Loaded WO3	https://doi.org/10.1021/acs.jpclett.9b03114	Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The Case of Platinum-Loaded WO3
In-situ transmission electron microscopy investigation of the influence of hydrogen on the oxidation mechanisms of fine grained magnesium	http://www.sciencedirect.com/science/article/pii/S0254058420303059	In-situ transmission electron microscopy investigation of the influence of hydrogen on the oxidation mechanisms of fine grained magnesium
In SituOxidation Studies of High-Entropy Alloy Nanoparticles	https://pubs.acs.org/doi/10.1021/acsnano.0c05250	In SituOxidation Studies of High-Entropy Alloy Nanoparticles
Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactions	https://www.cambridge.org/core/journals/microscopy-and-microanalysis/ article/abs/introducing-and-controlling-water-vapor-in-closedcell-in-situ- electron-microscopy-gas-reactions/51C2F813D9803452A7B556AB720FF DBA	Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactions
Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?	http://link.springer.com/10.1007/s11244-020-01398-6	Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?
Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates	http://xlink.rsc.org/?DOI=C9MH01408J	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates
Insight on thermal stability of magnetite magnetosomes: implications for	http://www.nature.com/articles/s41598-020-63531-5	Insight on thermal stability of magnetite magnetosomes: implications for

Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas

the fossil record and biotechnology

http://xlink.rsc.org/?DOI=D0SC01600D

Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas

the fossil record and biotechnology

Iron-silica interaction during reduction of precipitated silica-promoted iron oxides using in situ XRD and TEM	https://www.sciencedirect.com/science/article/pii/S0926860X21000454	Iron-silica interaction during reduction of precipitated silica-promoted iron oxides using in situ XRD and TEM
An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)	https://linkinghub.elsevier.com/retrieve/pii/S1387181121000834	An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)
Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials	https://www.sciencedirect.com/science/article/pii/S136970212100050X	Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials
In Situ TEM Study of Rh Particle Sintering for Three-Way Catalysts in High Temperatures	https://www.mdpi.com/2073-4344/11/1/19	In Situ TEM Study of Rh Particle Sintering for Three-Way Catalysts in High Temperatures
In situ STEM study on the morphological evolution of copper-based nanoparticles during high-temperature redox reactions	https://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr01648b	In situ STEM study on the morphological evolution of copper-based nanoparticles during high-temperature redox reactions
Revealing Size Dependent Structural Transitions in Supported Gold Nanoparticles in Hydrogen at Atmospheric Pressure	https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202104571	Revealing Size Dependent Structural Transitions in Supported Gold Nanoparticles in Hydrogen at Atmospheric Pressure

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
Operando Electron Microscopy Study of Cobalt-based Fischer-Tropsch Nanocatalysts	https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202001074	Operando Electron Microscopy Study of Cobalt-based Fischer-Tropsch Nanocatalysts
Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis	https://www.nature.com/articles/s41467-021-27474-3	Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis
Galvanic Transformation Dynamics in Heterostructured Nanoparticles	https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202105866	Galvanic Transformation Dynamics in Heterostructured Nanoparticles
Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells	https://pubs.acs.org/doi/abs/10.1021/acsami.0c21293	Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells
Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEM	https://www.cambridge.org/core/product/identifier/S1431927621003160/type/ journal_article	Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEM
Understanding Cu-Alumina Interactions in Redox Conditions for Chemical Looping Combustion (CLC) Application – A Multi-scale Correlative Electron and X-Ray Microscopy Study	<u>https://www.cambridge.org/core/product/identifier/S1431927621013283/type/</u> journal_article	Understanding Cu-Alumina Interactions in Redox Conditions for Chemical Looping Combustion (CLC) Application – A Multi-scale Correlative Electron and X-Ray Microscopy Study

https://pubs.acs.org/doi/10.1021/acsaem.1c01321

Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-DrivenIn SituElectron Microscopy

Stabilization of Metal Single Atoms on Carbon and TiO 2 Supports for CO 2 Hydrogenation: The Importance of Regulating Charge Transfer	https://onlinelibrary.wiley.com/doi/10.1002/admi.202001777	Stabilization of Metal Single Atoms on Carbon and TiO 2 Supports for CO 2 Hydrogenation: The Importance of Regulating Charge Transfer
Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM	https://linkinghub.elsevier.com/retrieve/pii/S1359646221001007	Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM
Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxide	https://linkinghub.elsevier.com/retrieve/pii/S0169433221011077	Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxide
A multiscalein situhigh temperature high resolution transmission electron microscopy study of ThO 2 sintering	http://xlink.rsc.org/?DOI=D1NR00956G	A multiscalein situhigh temperature high resolution transmission electron microscopy study of ThO 2 sintering
In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration	https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc01181b#!	In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration
Template-free synthesis of a yolk–shell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storage	https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta07221h	Template-free synthesis of a yolk–shell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storage
Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applications	https://pubs.acs.org/doi/10.1021/acsanm.1c03534	Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applications

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework	https://www.science.org/doi/10.1126/science.abn7667	In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework
Layer-by-layer growth of bilayer graphene single-crystals enabled by self- transmitting catalytic activity	https://arxiv.org/abs/2205.01468	Layer-by-layer growth of bilayer graphene single-crystals enabled by self- transmitting catalytic activity
Polymer-Mediated Particle Coarsening within Hollow Silica Shell Nanoreactors	https://pubs.acs.org/doi/10.1021/acs.chemmater.2c00510	Polymer-Mediated Particle Coarsening within Hollow Silica Shell Nanoreactors
In SituVisualization on Surface Oxidative Corrosion with Free Radicals: Black Phosphorus Nanoflake as an Example	https://pubs.acs.org/doi/10.1021/acs.est.1c06567	In SituVisualization on Surface Oxidative Corrosion with Free Radicals: Black Phosphorus Nanoflake as an Example
Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?	https://pubs.rsc.org/en/content/articlelanding/2022/fd/d2fd00130f	Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?
Atomic imaging of zeolite-confined single molecules by electron microscopy	https://www.nature.com/articles/s41586-022-04876-x	Atomic imaging of zeolite-confined single molecules by electron microscopy

Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction

https://www.nature.com/articles/s41467-022-34237-1

Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction

Visualizing the Formation of High-Entropy Fluorite Oxides from an Amorphous Precursor at Atomic Resolution	https://pubs.acs.org/doi/10.1021/acsnano.2c09760	Visualizing the Formation of High-Entropy Fluorite Oxides from an Amorphous Precursor at Atomic Resolution
In Situ TEM Study of the Genesis of Supported Nickel Catalysts	https://pubs.acs.org/doi/10.1021/acs.jpcc.3c01117	In Situ TEM Study of the Genesis of Supported Nickel Catalysts
Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder	https://onlinelibrary.wiley.com/doi/10.1002/admi.202202507	Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder
Environment-Dependent Structural Evolution and Electrocatalytic Performance in N 2 Reduction of Mo-Based ZIF-8	https://pubs.acs.org/doi/10.1021/acsanm.3c01669	Environment-Dependent Structural Evolution and Electrocatalytic Performance in N 2 Reduction of Mo-Based ZIF-8
Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts	https://www.nature.com/articles/s41467-023-39458-6	Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts
Atomic Scale Observation of the Structural Dynamics of Supported Gold Nanocatalysts under 1,3-Butadiene by in situ Environmental Transmission Electron Microscopy	https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300434	Atomic Scale Observation of the Structural Dynamics of Supported Gold Nanocatalysts under 1,3-Butadiene by in situ Environmental Transmission Electron Microscopy
Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling	https://pubs.acs.org/doi/10.1021/jacs.3c02822	Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling

BIBLIOGRAPHY — JOURNAL ARTICLES

Protochips Creating the Connected Lab

TITLE	WEB LINK	CITATIONS
Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study byIn SituElectron Microscopy and Synchrotron-Based X-ray Scattering	https://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167	Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study byln SituElectron Microscopy and Synchrotron-Based X-ray Scattering
How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces	https://pubs.acs.org/doi/10.1021/jacsau.3c00330	How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces
Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing	https://www.nature.com/articles/s41598-023-46960-w	Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing
In situ TEM investigation of the oxide/metal interface during the annealing of anodically formed titanium dioxide nanotubes	https://link.springer.com/10.1007/s10853-023-09005-1	In situ TEM investigation of the oxide/metal interface during the annealing of anodically formed titanium dioxide nanotubes
Pathway to defective highly active and stable MoVSbOx catalysts for ethane oxidative dehydrogenation through a dislodging process involving controlled combustion of amino-organic compounds	https://linkinghub.elsevier.com/retrieve/pii/S0021951723003512	Pathway to defective highly active and stable MoVSbOx catalysts for ethane oxidative dehydrogenation through a dislodging process involving controlled combustion of amino-organic compounds
Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere	https://pubs.acs.org/doi/10.1021/acsnano.3c03721	Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies	https://pubs.acs.org/doi/10.1021/acs.jpcc.3c02657	Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies
Metal Organic Vapor Phase Epitaxy in a Transmission Electron Microscope	https://onlinelibrary.wiley.com/doi/10.1002/smtd.202301079	Metal Organic Vapor Phase Epitaxy in a Transmission Electron Microscope

Visualization of the structural transformation of NiO/YSZ/BZY

Visualization of the structural transformation of NiO/YSZ/BZY

nanocomposite particles usingin situgas environmental transmission electron microscopy	http://xlink.rsc.org/?DOI=D3NR04525K	nanocomposite particles usingin situgas environmental transmission electron microscopy
Elucidating the Reaction Pathway in the Ammonolysis of MoO 3 via In Situ Powder X-ray Diffraction and Transmission Electron Microscopy	https://pubs.acs.org/doi/10.1021/acs.chemmater.3c01344	Elucidating the Reaction Pathway in the Ammonolysis of MoO 3 via In Situ Powder X-ray Diffraction and Transmission Electron Microscopy
Oscillatory phase transition induced structural extension during iron oxide reduction	https://linkinghub.elsevier.com/retrieve/pii/S2667325824000037	Oscillatory phase transition induced structural extension during iron oxide reduction
Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibility	https://www.science.org/doi/10.1126/sciadv.adj6417	Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibility
Synthesis of core@shell catalysts guided by Tammann temperature	https://www.nature.com/articles/s41467-024-44705-5	Synthesis of core@shell catalysts guided by Tammann temperature
Synthesis of uniform Fe2O3@Y2O3 yolk–shell nanoreactors as chemical looping oxygen carriers	https://www-sciencedirect-com/science/article/pii/S0926337324002492	Synthesis of uniform Fe2O3@Y2O3 yolk–shell nanoreactors as chemical looping oxygen carriers
Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons	https://www.nature.com/articles/s41467-024-46232-9	Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons